skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "De_Philippis, Guido"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth 3–dimensional Riemannian manifolds. The constructed min‐max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension 3. 
    more » « less
  2. Let Σ<#comment/> \Sigma be a smooth Riemannian manifold, Γ<#comment/> ⊂<#comment/> Σ<#comment/> \Gamma \subset \Sigma a smooth closed oriented submanifold of codimension higher than 2 2 and T T an integral area-minimizing current in Σ<#comment/> \Sigma which bounds Γ<#comment/> \Gamma . We prove that the set of regular points of T T at the boundary is dense in Γ<#comment/> \Gamma . Prior to our theorem the existence of any regular point was not known, except for some special choice of Σ<#comment/> \Sigma and Γ<#comment/> \Gamma . As a corollary of our theorem we answer to a question in Almgren’sAlmgren’s big regularity paperfrom 2000 showing that, if Γ<#comment/> \Gamma is connected, then T T has at least one point p p of multiplicity 1 2 \frac {1}{2} , namely there is a neighborhood of the point p p where T T is a classical submanifold with boundary Γ<#comment/> \Gamma ; we generalize Almgren’s connectivity theorem showing that the support of T T is always connected if Γ<#comment/> \Gamma is connected; we conclude a structural result on T T when Γ<#comment/> \Gamma consists of more than one connected component, generalizing a previous theorem proved by Hardt and Simon in 1979 when Σ<#comment/> = R m + 1 \Sigma = \mathbb R^{m+1} and T T is m m -dimensional. 
    more » « less